Hair cell regeneration and recovery of auditory thresholds following aminoglycoside ototoxicity in Bengalese finches.

نویسندگان

  • S M Woolley
  • A M Wissman
  • E W Rubel
چکیده

Birds regenerate auditory hair cells when original hair cells are lost. Regenerated hair cells become innervated and restore hearing function. Functional recovery during hair cell regeneration is particularly interesting in animals that depend on hearing for vocal communication. Bengalese finches are songbirds that depend on auditory feedback for normal song learning and maintenance. We examined the structural and functional recovery of the Bengalese finch basilar papilla after aminoglycoside ototoxicity. Birds were treated with the ototoxic aminoglycoside, amikacin, daily for 1 week. Treatment resulted in hair cell loss across the basal half of the basilar papilla and corresponding high frequency hearing loss. Hair cell regeneration and recovery of auditory brainstem responses were compared in the same animals. Survival times following treatment were between 1 day and 12 weeks. Analysis of structural recovery at weekly intervals indicated that hair cells in the Bengalese finch papilla require a maximum of 1 week to regenerate and appear with immature morphology at the epithelial surface. An additional 6 days are required for adult-like morphology to develop. Repopulation of the damaged region was complete by 8 weeks. Recovery of auditory thresholds began 1 week after treatment and reached asymptote by 4 weeks. Slight residual threshold shifts at 2.0 kHz and above were observed up to 12 weeks after treatment. Direct comparison of structural and functional recovery indicates that auditory thresholds recover maximally before a full complement of hair cells has regenerated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vocal memory and learning in adult Bengalese Finches with regenerated hair cells.

Critical learning periods are common in vertebrate development. In many birds, song learning is limited by a critical period; juveniles copy songs from adult birds by forming memories of those songs during a restricted developmental period and then using auditory feedback to practice their own vocalizations. Adult songs are stable over time regardless of exposure to other birds, but auditory fe...

متن کامل

Aminoglycoside-Induced Otoneurotoxicity: Analysis of Inner Hair Cell Synaptic Plasticity Following Drug Exposure

Aminoglycoside antibiotics are powerful drugs for combating bacterial infections, but are limited in use due to their ototoxicity. This class of drug targets the auditory hair cells of the cochlea, causing cell death, which leads to a decline in auditory function. In spite of much research aimed at revealing a mechanism of damage, there are no co-therapies available to diminish the ototoxic lia...

متن کامل

Acoustic Trauma Increases Cochlear and Hair Cell Uptake of Gentamicin

BACKGROUND Exposure to intense sound or high doses of aminoglycoside antibiotics can increase hearing thresholds, induce cochlear dysfunction, disrupt hair cell morphology and promote hair cell death, leading to permanent hearing loss. When the two insults are combined, synergistic ototoxicity occurs, exacerbating cochlear vulnerability to sound exposure. The underlying mechanism of this synerg...

متن کامل

Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: A simple model to study hair cell loss and regeneration

The Mongolian gerbil, Meriones unguiculatus, has been widely employed as a model for studies of the inner ear. In spite of its established use for auditory research, no robust protocols to induce ototoxic hair cell damage have been developed for this species. In this paper, we demonstrate the development of an aminoglycoside-induced model of hair cell loss, using kanamycin potentiated by the lo...

متن کامل

Recovery of the vestibulocolic reflex after aminoglycoside ototoxicity in domestic chickens.

Avian auditory and vestibular hair cells regenerate after damage by ototoxic drugs, but until recently there was little evidence that regenerated vestibular hair cells function normally. In an earlier study we showed that the vestibuloocular reflex (VOR) is eliminated with aminoglycoside antibiotic treatment and recovers as hair cells regenerate. The VOR, which stabilizes the eye in the head, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hearing research

دوره 153 1-2  شماره 

صفحات  -

تاریخ انتشار 2001